Roll No.

Total No. of Pages : 03

Total No. of Questions : 09

B. Tech. (AE) (Sem.-5) NUMERICAL METHODS IN SIMULATION ENGINEERING Subject Code : AE-309 Paper ID : [A0717]

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY.
- 2. Attempt any FOUR questions from SECTION-B.
- 3. Attempt any TWO questions from SECTION-C.

SECTION-A $(10 \times 2 = 20 \text{ Marks})$

- 1. (a) Find the absolute error and relative error in $\sqrt{6} + \sqrt{7} + \sqrt{8}$ correct to 4 significant digits.
 - (b) State convergence conditions for Gauss Seidal's method.
 - (c) Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places.
 - (d) Drive error in linear interpolation formula.
 - (e) Prove that $\Delta \nabla = \delta^2$.
 - (f) Find the missing term in the table ;

x	2	3	4	5	6	
У	45.0	49.2	54.1		67.4	

(g) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's 1/3 rule.

www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

- (h) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0; find y for x = 0.1 by Euler's method.
- (i) How system, model and simulation are related to each other.
- (j) Write characteristic of central tendency.

SECTION-B $(4 \times 5 = 20 \text{ Marks})$

- 2. Find a real root of $2x \log_{10} x = 7$ correct to four decimal places using iteration method.
- 3. Find all roots of the equation $x^3 2x^2 5x + 6 = 0$ by Graeffe's method.
- 4. Using Newton's forward interpolation formula. Show that $\sum n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$.
- 5. Using Runge-Kutta method of fourth order, solve for y at x = 1.2, 1.4

from $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ given $x_0 = 1, y_0 = 0$.

6. How a system is related to simulation ? Explain the benefits and limitations of experimenting with the actual system and with a model of the system.

SECTION-C $(2 \times 10 = 20 \text{ Marks})$

7. (a) Find the largest eigen value and the corresponding eigen vector of the

matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, using power method. Take $\begin{bmatrix} 1, 0, 0 \end{bmatrix}^T$ as initial

eigen vector.

(b) Using the partition method, find the inverse of A = $\begin{bmatrix} 13 & 14 & 6 & 4 \\ 8 & -1 & 13 & 9 \\ 6 & 7 & 3 & 2 \\ 9 & 5 & 16 & 11 \end{bmatrix}.$

8. (a) Use Simpson's 1/3rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.

(b) The velocity v (km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows :

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

The median and mode of the following wage distribution are known to be
3, 350 and 3400 (in Rs.) respectively. Find the value of A, B and C. Also find mean.

Wage (in Rs.)	No. of employees
0-1000	4
1000-2000	16
2000-3000	А
3000-4000	В
4000-5000	С
5000-6000	6
6000-7000	4

Total No. of employees is 230.